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Abstract. The iteration of rational maps of degree two is discussed for functions which
arise from a difference method approximating the logistic equation and we interpolate between
integrable and nonintegrable maps. We obtain a necessary and sufficient condition for the
statement that the Julia set is contained in the set of real numbers and a sufficient condition
for the Julia set to be a Cantor set. The information dimensions of the Julia sets are calculated
numerically to show how they change as the parameter of the interpolation approaches the
integrable limit.

1. Introduction

In the study of nonlinear phenomena the transition between chaotic and non-chaotic
behaviour is one of the most difficult and also important subjects to be clarified in order to
understand their dynamics. We have proposed [1] a simple model of the type of logistic
equation which interpolates integrable and non-integrable maps and enables us to study the
transition analytically. Since the Julia set of a map characterizes non-integrability and does
not exist in an integrable map, we are interested in knowing how it behaves as a parameter,
which interpolates between the two phases, approaches the critical value.

The iteration of rational functionsfµ,γ (x) given by

fµ,γ (x) = µx(1 − γ x)

1 + µ(1 − γ )x
µ > 1 and 06 γ 6 1 (1)

is our original concern in this paper. The functionsfµ,γ (x) appear in a difference method
approximating the logistic differential equation

d

dτ
u = au(1 − u) (2)

in two different methods, one of which preserves integrability of the differential equation
while the other violates integrability under the discretization.

The well known map which generates chaos is derived from (2) by considering the
time variablet as being discrete. Letτ be the unit time interval and consider the following
equation due to the Euler difference method:

un+1 − un

τ
= aun(1 − un). (3)
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Let xn andµ be given by

xn = aτ

1 + aτ
un µ = 1 + aτ (4)

then (3) is written in the form

xn+1 = µxn(1 − xn). (5)

An iteration of this map is well known [2, 3] to behave chaotically whenµ is greater than
3.615 47. . . .

The difference method of (2) is not unique but there exist infinitely many ways. Among
other candidates, we are interested in a method which preserves integrability which is
possessed by the original equation (2). Such a method has been studied by Morisita 20 years
ago [4, 5]. In his method (2) was replaced by

xn+1 = µxn(1 − xn+1). (6)

It is not difficult to convince ourselves that this equation reduces to the differential
equation (2) in the continuous time limit. The integrability of this map is apparent if
we solve (6) forxn+1:

xn+1 = µ
xn

1 + µxn

. (7)

Since this is a M̈obius map, the iteration of this map preserves its form of the map. In fact
the solution is given by

xn = µn x0

1 + µ(1 − µn/1 − µ)x0
(8)

for an arbitrary initial valuex0. The solution of this form coincides with the solution of (2)
in the continuous limit.

In our previous paper [1] we have shown that the integrable map (6) can be obtained by
a reduction from the Hirota bilinear difference equation. The Hirota bilinear difference
equation itself is satisfied by every solution of the KP hierarchy of soliton equations.
Therefore the integrability of equation (6) has the same origin with the soliton equations.

Now there arises a question of what is the source which causes such a big difference of
the behaviour of solutions to (5) and (6), both of which are obtained by discretizations of the
same equation (2). We want to understand their behaviour from a common background. We
investigate these particular maps not because they are special, but because we are interested
in them because one is a prototype of non-integrable systems and the other of completely
integrable systems.

It should be emphasized here that the complete integrability of a nonlinear map, of
which we are concerned in this paper, differs from a non-chaotic behaviour. For instance, a
solution of the so-called logistic map (5) persues a periodic motion and is stable if the value
of µ is less than 3.615 47. . . , but the system is not integrable in the sense that we cannot
solve the map analytically. On the other hand, a completely integrable map is a system in
which all of the solutions can be obtained analytically. We have a variety of completely
integrable nonlinear systems known as soliton systems. Although they play central roles
in physics and other fields, they occupy only a small part of nonlinear phenomena and
are surrounded by chaos. The transition between completely integrable and non-integrable
behaviour must be distinguished from the transition between stable behaviour and chaotic
behaviour in one non-integrable system. We consider in this paper the former transition.

From a phenomenological point of view it is quite difficult to judge if a stable motion
is caused by completely integrable dynamics or non-integrable dynamics. Therefore, we
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ask the question of how can one characterize a completely integrable system among other
nonlinear systems. Instead of answering this question phenomenologically, we would like
to propose here that we consider the dynamical system in the complex plane and study a
Julia set of the iteration of the map.

A Julia set of the logistic map (5) appears on the real axis whenµ is greater than
3.615 47. . . and the chaotic behaviour of the map is observed; otherwise, it remains off the
real axis in the complex plane even if a solution is periodic and stable. A Julia set does
not exist if a map is completely integrable. Therefore the existence of a Julia set is a way
of discriminating between a completely integrable system and a non-integrable system.

In order to clarify the transition between an integrable map and a non-integrable map
it would be useful to study a system which interpolates them, rather than studying them in
parallel. For this purpose we combine the maps (5) and (6) into

xn+1 = µxn{1 − γ xn − (1 − γ )xn+1} (9)

that is,

xn+1 = fµ,γ (xn) (10)

wherefµ,γ is given by (1).
In the case in whichγ = 1, fµ,1(x) is the logistic map (5). In the other extreme case

γ = 0, the sequence of iterated images{f ◦n
µ,0(x)}n>0 converges to 1− 1/µ as n tends to

infinity, for any µ > 1 andx > 0, and we can say that ‘chaos’ does not occur. Our class
of rational functionsfµ,γ includes both the extreme cases. We note that the Schwartzian
derivative of the mapfµ,γ is negative atx 6= −1/(µ(1−γ )) for eachµ > 1 andγ ∈ [0, 1],
and that the mapfµ,γ is unimodal in the interval [0, 1/γ ]. Under an additional condition,
the mapfµ,γ is a S-unimodal map on the interval [0, 1/γ ] [6].

The functionsfµ,γ (x) given by (1) will be extended to the functionsfµ,γ (z) with a
complex variablez:

fµ,γ (z) = µz(1 − γ z)

1 + µ(1 − γ )z
. (11)

The rational functionsfµ,γ (z) can be regarded as holomorphic maps from the Riemann
sphereĈ to Ĉ.

Since we are interested in clarifying the transition between integrable and non-integrable
maps, the main purpose of this paper is to study the iteration offµ,γ with small γ . It is,
however, more convenient to consider, instead of thefµ,γ , the mapFµ,γ defined by

Fµ,γ (z) = ϕ−1 ◦ fµ,γ ◦ ϕ(z) (12)

whereϕ(z) is the Möbius map given by

ϕ(z) = z + 1 − 1

µ
.

Note thatϕ(0) = 1 − 1/µ. The origin is a fixed point ofFµ,γ , since 1− 1/µ is a fixed
point of fµ,γ . The origin will be shown in section 2 to be an attracting fixed point ofFµ,γ

for γ < 1
2.

We are mainly concerned with the Julia setJ (Fµ,γ ) and see their features at smallγ .
In section 3, a necessary and sufficient condition will be obtained to ensure that the Julia
set J (Fµ,γ ) is included in the set of real numbers, and the immediate basin of the origin
will turn out to be equal toĈ − J (Fµ,γ ) for small γ . The Julia setJ (Fµ,γ ) will be shown,
in section 4, to be a Cantor set for smallγ . In this case,Fµ,γ is a map called type E in
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[7]. The boundary of the immediate basin of the origin of our map must be classified as
the fractal case according to the classification of basin boundaries in [8].

The existence of a Julia set on the real axis means that physically we observe chaos when
the parameters are properly fixed. It is then desirable to know how they look, particularly
whenγ is small. To supply information of their behaviour we present numerical calculations
of the information dimension and the box dimension of the Julia set for some values of the
parameters. It will be shown that the Julia set becomes dilute as the parameterγ approaches
zero, which is the critical value of the transition.

2. Preliminaries

The family of rational functions, which will be discussed in this paper, is given by

Fµ,γ (z) = z
−µγ z + 1 + γ − γµ

(1 − γ )µz + µ + γ − γµ
(13)

with parametersµ > 1 and γ ∈ [0, 1]. Fµ,γ is a holomorphic map from the Riemann
sphereĈ to itself, which has degree two forγ > 0. In the case in whichγ = 0, Fµ,γ (z) is
a Möbius transformation (bijective rational map).

The fixed points of the mapFµ,γ for γ > 0 are 0,∞ and z0 = −1 + 1/µ, andFµ,0

has the two fixed points 0 andz0. In order to make clear the stability and instability of the
fixed points, we need the following lemma, which is obtained by an elementary calculation.

Lemma 2.1.

F ′
µ,γ (0) = 1 + γ − γµ

µ − γµ + γ

d

dz

{
1

Fµ,γ (1/z)

}
|z=0= −1 − γ

γ
for γ > 0

and

F ′
µ,γ (z0) = µ. (14)

Lemma 2.1 implies the following.
The fixed points 0 and∞ are attracting and repelling, respectively, if 0< γ < 1

2,
attracting and neutral ifγ = 1

2, attracting and attracting ifµ(2γ − 1) < 2γ + 1 and
γ > 1

2, neutral and attracting ifµ(2γ − 1) = 2γ + 1, and repelling and attracting if
µ(2γ − 1) > 2γ + 1. The fixed pointz0 is always repelling.

Let G1(z) andG2(z) be holomorphic maps from̂C to Ĉ. If ϕ−1 ◦ G1 ◦ ϕ = G2 holds
for some M̈obius transformationϕ, thenG1 andG2 are called analytically conjugate, and
the dynamical systems{G◦n

1 : n > 0} and{G◦n
2 : n > 0} turn out to be holomorphically the

same.
Next, we will give the condition for two rational functions in our family (13) to be

analytically conjugate.

Lemma 2.2. Distinct mapsFµ,γ (z) andFµ′,γ ′(z) are analytically conjugate if and only if
the both conditions

µ = µ′ (15)

and
γ + γ ′

2
= 1

2

(
1 + 1

µ − 1

)
(16)

hold.
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Proof. Suppose that there exists a Möbius transformationϕ such that the equality

ϕ−1 ◦ Fµ,γ ◦ ϕ = Fµ′,γ ′ (17)

holds for suitable pairs (µ, γ ) and (µ′, γ ′).
Then,ϕ maps the fixed points ofFµ′,γ ′ to that ofFµ,γ , and it keeps the multipliers at

the fixed points.
Put z′

0 = ϕ−1(z0). The above fact implies thatF ′
µ′,γ ′(z

′
0) = µ > 1. z′

0 cannot be equal
to 0 or∞ becauseF ′

µ′,γ ′(0) < 1 and the multiplier ofF ′
µ′,γ ′ at ∞ is negative as are known

from lemma 2.1. That is,F ′
µ′,γ ′(z

′
0) = µ′. Hence equality (15) holds and it followsz0 = z′

0
from z′

0 = −1 + 1/µ′.
Thus, there exists at most one non-identical Möbius transformationϕ satisfying (17),

and it is written in the form

ϕ(z) = (−1 + 1/µ)2

z
. (18)

An elementary calculation gives us the fact that the transformationϕ given by (18) satisfies
(17) for (µ, γ ) and (µ, γ ′) if and only if the equality (16) holds. �

3. The Julia setJ(Fµ,γ ) for small γ

Let G(z) be any holomorphic map from the Riemann sphereĈ to Ĉ. That is,G(z) is a
rational function onĈ. First, we will give the definition of the Julia set and the Fatou set
of G.

Definition. Let z0 ∈ Ĉ be fixed. If there exists some neighbourhoodU of z0 so that
sequence of iterates{G◦n} restricted toU forms a normal family, then we say thatz0

belongs to the Fatou set ofG. Otherwise, if no such neighbourhood exists, we say thatz0

belongs to the Julia setJ (G).

Next, we recall the basic statement on the Julia set.
Suppose thatz′

0 ∈ J (G). Then, the Julia setJ (G) is equal to the closure of the set of
all iterated preimages

{z : G◦n(z) = z′
0 for somen > 0}.

This statement will play an important role in the proof of theorem 3.1.
Now, we are in a position to state one of our main results.

Theorem 3.1. Suppose thatγ < 1
2. The Julia setJ (Fµ,γ ) is contained in the real numbers

R if and only if

µ >
(

2γ

1 − 2γ

)2

.

Proof. DefineF̃µ,γ (z) by

F̃µ,γ (z) = ϕ−1 ◦ Fµ,γ (z) ◦ ϕ

whereϕ(z) = 1
2. We have

F̃µ.γ (z) = z
(µ + γ − γµ)z + (1 − γ )µ

(1 + γ − γµ)z − µγ
. (19)

Note thatJ (Fµ,γ ) ⊂ R is equivalent toJ (F̃µ,γ ) ⊂ R.
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We can see that 1/z0 = −µ/µ − 1 ∈ J (F̃µ,γ ), sinceϕ(z0) = 1/z0 is a repelling fixed
point of F̃µ,γ . Consequently, our problem is equivalent to finding a condition to ensure that
the set of all preimages of 1/z0

A = {z : F̃ ◦n
µ,γ (z) = 1/z0 for somen > 0} (20)

is included in the real numbersR.
It is easy to see that̃F−1

µ,γ (1/z0) equals the set{1/z0, z1}, wherez1 = 1/(1/γ +1/µ−1).
For simplicity, we putz2 = γµ/(1 + γ − γµ). Note that

F̃µ,γ (z2) = ∞ ∈ Ĉ.

The intervals (−∞, z2) and (z2, +∞) in R are denoted byEi (i = 1, 2) in the following
way:

E1 = (−∞, z2) andE2 = (z2 + ∞) if z2 > 0

E1 = (z2 + ∞) andE2 = (−∞, z2) if z2 < 0.

The casez2 = 0 is excluded, becausez2 = 0 meansγ = 0.
By a standard calculus, we see that maxx∈E1 F̃µ,γ (x) and minx∈E2 F̃µ,γ (x) exist, and that

max
x∈E1

F̃µ,γ (x) = 1

µ/
(√

1 + 0µ + 1
)2

(1/γ ) − 1 + (1/µ)
(21)

and

min
x∈E2

F̃µ,γ (x) = 1

µ/
(√

1 + 0µ + 1
)2

(1/γ ) − 1 + (1/µ)
(22)

where0 = (1 − γ )/γ .
Note thatF̃µ,γ (x) is unimodal in the interval [1/z0, z1] ⊂ E1, that

min
x∈[1/z0,z1]

F̃µ,γ (x) = F̃µ,γ

(
1

z0

)
= F̃µ,γ (z1) = 1

z0

and that the conditionγ < 1
2 implies

min
x∈E2

F̃µ,γ (x) > z1. (23)

Suppose that maxx∈E1 F̃µ,γ (x) < z1. Then, the equality

F̃µ,γ (x) = z1

does not have real solutions, that is,F̃−1
µ,γ (z1) are not real.

Consequently, the condition

max
x∈E1

F̃µ,γ (x) > z1 (24)

is necessary forA ⊂ R, where the setA is given by (20).
Suppose that (24) holds. Then, for any real numbera in the interval [1/z0, z1], both the

solutions of the equality

F̃µ,γ (x) = a

belong to the interval [1/z0, z1]. Hence, we see that the setA of all preimages of 1/z0 is
included inR. Thus, we obtain that the condition (24) is sufficient forA ⊂ R.

By (21) and (24), we see that the condition

µ >
(

2γ

1 − 2γ

)2

is necessary and sufficient forJ (Fµ,γ ) ⊂ R. Thus, the proof is complete. �
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Making use of lemma 2.2, we can find the next statement for the caseγ > 1
2.

Corollary 3.2. Suppose thatγ > 1
2. The Julia setJ (Fµ,γ ) is included inR if and only if

µ > (2γ /(1 − 2γ ))2.

Now, we discuss the immediate basin of the origin for the mapFµ,γ with parameters
satisfyingγ < 1

2 and µ > (2γ /(1 − 2γ ))2. Let � be the immediate basin of the origin,
which is the attracting fixed point ofFµ,γ . The set� is known to be an open set in the
Riemann spherêC which contains some neighbourhood of the origin. By theorem 3.1, we
obtain the following theorem.

Theorem 3.3. Suppose thatγ < 1
2, and thatµ > (2γ /(1 − 2γ ))2. Then, the immediate

basin� of the origin is equal to the open setĈ − J (Fµ,γ ).

Proof. First, let� be the basin of the origin. By the definition of Julia sets, we see that
the boundary∂� of � should be included inJ (Fµ,γ ). Suppose thatz′ ∈ C − R does not
belong to�. Then, it turns out that there existsz′′ ∈ ∂� on the segment connectingz′ and
the origin. Thus,z′′ ∈ J (Fµ,γ ) and z′′ is not real. This is a contradiction. Consequently,
C − R ⊂ �.

Next, we suppose thatx ∈ R does not belong to�. Then, we see thatx ∈ ∂�, because
any neighbourhood ofx contains a point of�. Hence,x ∈ J (Fµ,γ ). Consequently,x ∈ R
andx 6∈ J (Fµ,γ ) imply x ∈ �. Since� is connected, the proof is complete. �

Remark 3.4. Suppose thatγ < 1
2, and thatµ > (2γ /(1−2γ ))2. The proof of theorem 3.1

showsJ (F̃µ,γ ) ⊂ [1/z0, z1]. That is, we see thatJ (Fµ,γ ) ⊂ (−∞, z0] ∪ [1/γ + 1/µ −
1, ∞) ∪ {∞}.

4. The Julia set as a Cantor set

In this section, we study the Julia setJ (Fµ,γ ) in the case thatJ (Fµ,γ ) is included in the
set of real numbersR. Namely, we suppose thatγ 6= 1

2, and thatµ > (2γ /(1− 2γ ))2. We
are concerned with conditions onµ andγ under whichJ (Fµ,γ ) is a Cantor set.

Our argument will be based on the following statement. LetR be a rational map of
degreed, whered > 2, and letζ be a (super) attracting fixed point ofR. If all of the
critical points ofR lie in the immediate basin ofζ , thenJ (R) is a Cantor set (theorem 9.8.1
in [9]).

Making use of this statement, we obtain the next theorem.

Theorem 4.1. Suppose thatγ < 1
2, and thatµ > (2γ /(1 − 2γ ))2. Then, the Julia set

J (Fµ,γ ) is a Cantor set.

Proof. It is sufficient to verify that all critical points ofFµ,γ lie in the immediate basin
of the origin. Obviously,Fµ,γ has two distinct critical points, which are denoted byα

and β. One of them is easily shown to lie in the interval (−1 + 1/µ, 1/γ − 1 + 1/µ).
Denote it byα. We see that the critical pointα belongs to the immediate basin� of the
origin, because the interval (−1 + 1/µ, 1/γ − 1 + 1/µ) is contained in�. In order to
show that the other critical pointβ lies in the immediate basin�, we need the notation
used in the proof of theorem 3.1. Obviously,F̃µ,γ (1/β) = maxx∈E1 F̃µ,γ (x). Therefore, if
F̃µ,γ (1/β) = maxx∈E1 F̃µ,γ (x) > z1, the point 1/β does not belong toJ (F̃µ,γ ). Hence, if
µ > (2γ /(1 − 2γ ))2, the pointβ does not lie inJ (Fµ,γ ). Thus, the proof is complete.�

Theorem 4.1 and lemma 2.2 imply the next corollary.



1838 N Saitoh et al

Corollary 4.2. Suppose thatγ > 1
2, and thatµ > (2γ /(1 − 2γ ))2. Then,J (Fµ,γ ) is a

Cantor set.

Remark. Under the conditionsγ 6= 1
2 andµ > (2γ /(1 − 2γ ))2, Fµ,γ is a map of type E

in [7].

5. Conclusion

We have studied iteration of the rational map which interpolates integrable and non-
integrable discretizations of the logistic equation. In particular we have shown that the
Julia set is contained on the real axis when the interpolation parameterγ is sufficiently
small. This means that chaos exists physically as the map approaches from a positive value
the critical pointγ = 0, where the map becomes integrable. If we want to clarify further
the transition between integrable and non-integrable maps near the critical point we must
know more details of the nature of the Julia sets, such as the Hausdorff dimension.

In order to supply this information we will present some numerical calculations of the
Julia sets in the following. We have calculated the Julia sets of the mapF̃µ,γ (z) for various
values ofγ which satisfyµ > [2γ /(1 − 2γ )]2 whenµ = 9.

Figure 1. γ = 0.375 : di = 0.752, db = 0.862. Figure 2. γ = 0.374 : di = 0.738, db = 0.847.

Figure 3. γ = 0.3 : di = 0.534, db = 0.577. Figure 4. γ = 0.2 : di = 0.434, db = 0.446.

In the figures the square box indicates the fixed scale atz = ±1 andz = ±i. It is clear
from the figures that the Julia sets are contained in the real axis as is claimed in the text.
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Figure 5. γ = 0.1 : di = 0.347, db = 0.354. Figure 6. γ = 0.01 : di = 0.277, db = 0.288.

Figure 7. γ = 0.001 : di = 0.245, db = 0.259. Figure 8. γ = 10−10 : di = 0.195, db = 0.223.

If γ does not satisfy the conditionµ > [2γ /(1 − 2γ )]2 by a small value orγ becomes
complex the Julia set extends outside of the real axis. Further observation reveals that the
region on the real axis where the Julia set exists becomes smaller asγ becomes smaller. In
fact the inverse map of̃Fµ,γ (z) becomes

1

2µ

(
z − µ ±

√
(z − µ)2

)
(25)

and hence it iterates the map starting from 0 to the set

0, −1, −1 − 1

µ
, −1 − 1

µ
− 1

µ2
, . . . ,−e1/µ.

This indicates that the Julia set becomes dilute as the parameter of interpolation approaches
the critical point. Our numerical calculation of the information dimensiondi as well as the
box dimensiondb seems to support this claim.
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